Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2004

1 hour 15 minutes

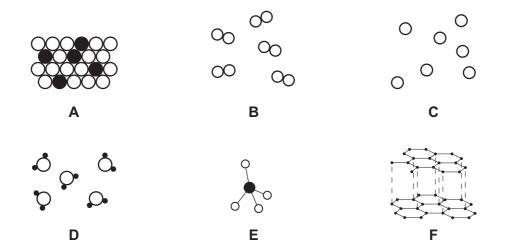
Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.


If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

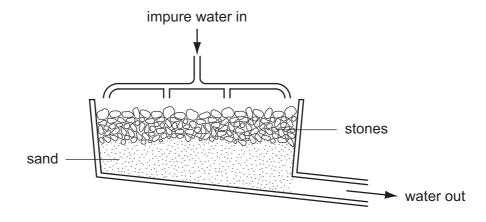
For Examir	ner's Use
1	
2	
3	
4	
5	
6	
Total	

This document consists of 16 printed pages.

1 The diagram shows models of various structures,

(a)	Wh	ich three of the structures A to F represent elements? Give a reason for your ansv	wer.
	stru	uctures	
	rea	son	[2]
(b)	Wh	ich one of the structures A to F represents a gas containing single atoms?	
			[1]
(c)	(i)	Which one of the structures A to F represents a gas containing diatomic molecule	∍s?
	(ii)	State the name of a gas which has diatomic molecules.	
			[2]
(d)	(i)	Which one of the structures A to F represents graphite?	
	(ii)	State one use of graphite.	
			[2]

For
Examiner's
1100


(e)	Stru	ıcture D represent	s a compound.				
	(i)	State what is mea	ant by the term <i>com</i>	pound.			
	/:: \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	£-11		=		40
	(ii)	which one of the	following substance	es is struct	ure E most lik	ely to represe	ent?
		Put a ring around	the correct answer				
		ammonia	hydrogen chloric	le	methane	water	[2]
(f)	Hyd	Irogen chloride is a	a compound.				
	(i)	Draw a diagram t chloride.	o show how the ele	ctrons are	arranged in a	n molecule of I	nydrogen
		Show only the ou	ter electrons.				
						drogen electro	
					3.1.3.1. 3		.
							[2]
	(ii)	State the name of	f the type of bondin	a present i	n hvdroaen cl	hloride.	
	(,		, р	g p . 000			[4]
							[1]
	(iii)		e dissolves in wate u would use litmus p				
							[2]
	(iv)	Which one of the solution of hydrod	e following values chloric acid?	is most lik	ely to repres	ent the pH of	f a dilute
		Put a ring around	the correct answer				
		pH 2	рН7	pH10)	pH14	[1]
		•	•			•	

4

For Examiner's Use

(v)	Complete the following equation for the reaction of hydrochloric acid magnesium.	with
	$Mg(s)$ + $HCl(aq)$ \rightarrow $MgCl_2(aq)$ + $H_2(g)$	[1]
(vi)	Name the salt formed in this reaction.	[1]

2 Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(a)	Exp	plain how this filter helps purify the water.	
			[2]
(b)	(i)	Why is chlorine added during water purification?	
	(ii)	After chlorination, the water is acidic. A small amount of slaked lime is added to acidic water. Explain why slaked lime is added.	the
1	(iii)	What is the chemical name for slaked lime?	
	(iv)	State one other use of slaked lime.	
			[4]

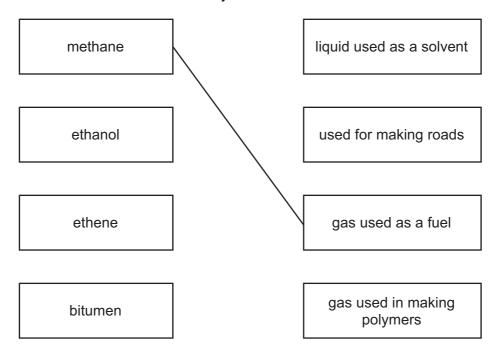
(c)	(c) (i) State the boiling point of pure water.										
										[2]	
	(ii) Describe a chemical test for water. test [1]										
		test								[1]	
		result								[1]	
	(iii)	State one	use of								
										[1]	
(d)	The	diagram sł	nows t	the arran	gement of	particles in	the thre	e differe	nt states of wat	er.	
			0								
		Α				В			С		
	Whi	ch of these	diagra	ams, A , I	B or C, sho	ows water in	n a solid	state?			
						*********				[1]	
(e)		am reacts w reaction.	vith et	hene in t	he presend	ce of a catal	lyst. Cor	nplete th	ne word equatio	n for	
	ethe	ene	+	steam	\rightarrow	***************************************				[1]	
(f)	Pota	assium read	cts vio	lently wit	h water. C	omplete the	word e	quation	for this reaction		
	pota	assium	+	water	\rightarrow			+			
										[2]	

3

					7					For
	en lump ased.	s of calo	cium carbona	ate rea	ct with hy	drochloric	acid, cai	bon dic	oxide gas	is Examiner's
	CaCO ₃	(s) +	2HC <i>l</i> (aq)	\rightarrow	CaCl ₂ (ad	1) +	CO ₂ (g)	+	$H_2O(I)$	
(a)			tical method to e of reaction.	for inve	stigating th	is reactio	n, which v	would er	nable you	to
										[4]
(b)	What e	ffect will t	he following h	nave on	the rate of	the react	ion?			
	(i) inc	reasing th	ne temperatui	re						
	(ii) add	ding wate	r to the acid							
	(iii) usi	ng powde	ered calcium	carbona	ate instead	of lumps				
										[3]
(c)		e a test f	or calcium ior	าร.						
	result		***************************************							шш
	test	*************								
			***************************************							[3]

For
Examiner's
HSP

(d)	Cal	cium can be obtained by the electrolysis of molten calcium chloride.	
	(i)	Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.	1
		[1]


(ii) Draw the electronic structure of an atom of calcium.

[2]

For Examiner's Use

[3]

- 4 Organic substances have many uses.
 - (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen ethane ethanol methane [1]

(c) Some reactions of organic compounds are shown below.

A
$$n CH_2=CH_2 \longrightarrow (-CH_2-CH_2-)_n$$

B
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

C
$$C_6H_{12}O_6$$
 \longrightarrow $2CO_2 + 2C_2H_5OH$ glucose

D
$$C_8H_{18}$$
 \longrightarrow $C_6H_{14} + C_2H_4$

(i) Which **one** of the reactions, **A**, **B**, **C** or **D**, shows fermentation?

(ii) Which one of the reactions, A, B, C or D, shows polymerization?

(iii) Which **one** of the reactions, **A**, **B**, **C** or **D**, shows combustion?

(iv) Which one of the reactions, A, B, C or D, shows cracking?

- [4
- (d) The hydrocarbon C_8H_{18} is an alkane.
 - (i) What is meant by the term hydrocarbon?

.....

(ii) Explain why this hydrocarbon is an alkane.

[2]

Look at the list of five elements below. argon bromine chlorine iodine potassium (a) Put these five elements in order of increasing proton number. [1] **(b)** Put these five elements in order of increasing relative atomic mass. [1] (c) The orders of proton number and relative atomic mass for these five elements are different. Which one of the following is the most likely explanation for this? Tick one box. The proton number of a particular element may vary. The presence of neutrons. The atoms easily gain or lose electrons. The number of protons must always equal the number of neutrons. [1] (d) Which of the five elements in the list are in the same group of the Periodic Table? [1] (e) (i) From the list, choose **one** element which has one electron in its outer shell. [1] (ii) From the list, choose **one** element which has a full outer shell of electrons. [1]

(f)	Which two of the following statements about argon are correct?							
	Tick two boxes.							
	Argon is a noble gas.							
	Argon reacts readily with potassium.							
	Argon is used to fill weather balloons.							
	Argon is used in light bulbs.		[2]					
(g)	Potassium chloride can be made by reacting potassium with chlorotassium chloride is ionic.	rine. The bonding	in					
	What does this information tell you about							
	(i) the boiling point of potassium chloride,							
			[1]					
	(ii) the electrical conductivity of molten potassium chloride?							
			[1]					
(h)	Describe the change in the electronic structure of potassium and they combine to make potassium chloride. change in potassium atom	chlorine atoms wh	ien					
	change in chlorine atom	•••••••••••••••••••••••••••••••••••••••						
		••••••••••	[2]					

- 6 Iron is extracted from its ore in a blast furnace using carbon (coke) as a reducing agent and as a source of heat.
 - (a) The coke burns in hot air. The equation for this reaction is

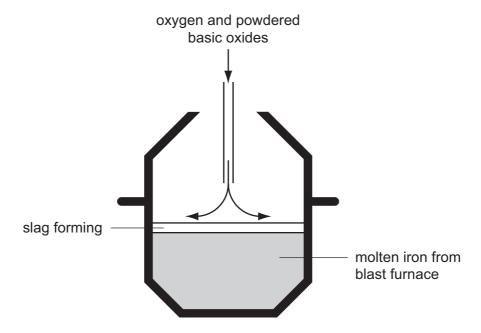
$$2C(s) \qquad + \qquad O_2(g) \qquad \qquad \rightarrow \qquad 2CO(g)$$

State the name of the gas produced in this reaction.

[1]

(b) Near the top of the blast furnace, the iron(III) oxide in the iron ore gets reduced to iron.

$$Fe_2O_3(s)$$
 + $3CO(g)$ \rightarrow $2Fe(I)$ + $3CO_2(g)$


Use the equation to explain why the change of iron(III) oxide to iron is a reduction reaction.

[1]

(c) In the hottest regions of the furnace, iron(III) oxide is reduced by carbon. Complete the equation for this reaction.

$$Fe_2O_3(s)$$
 + $C(s)$ \rightarrow $Fe(I)$ + $3CO(g)$ [2]

(d) The iron from the blast furnace contains up to 10% by mass of impurities. The main impurities are carbon, silicon and phosphorus. The diagram below shows one method of making steel from iron.

A mixture of oxygen and basic oxides is blown onto the surface of the molten iron.

(i)	What is the purpose of blowing oxygen onto	o the molten iron?		
				[1]
(ii)	A large amount of energy is released in the What name is given to chemical reactions when the state of the st	•	•	
				[1]
iii)	The basic oxides react with the impurition in the diagram suggests that iron?		•	
				[1]
iv)	Which one of the following is a basic oxide Put a ring around the correct answer.	?		
	calcium oxide carbon dioxide s	ulphur dioxide	water	[1]
(v)	Why is steel rather than iron used for const	ructing buildings a	nd bridges?	
				[1]

(e)	Special steels contain added elements such as vanadium, chromium, cobalt or nick These are all transition metals.	æl.
	State three properties of transition metals which are not shown by non-transit metals.	ion
	1	
	2.	
	3.	[3]
(f)	What is the name given to metals which are mixtures of more than one metal?	
		[1]

DATA SHEET
The Periodic Table of the Elements

								Ģ	Group								
_	=											=	≥	>	5	=	0
							- エ										4 H
							Hydrogen 1										Helium 2
7	6											1	12	14	16	19	20
=	Be											Ω	ပ	Z	0	ш	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Sodium 11	Mg Magnesium											A1 Aluminium	4	ıns	Sulphur 16	C1 Chlorine	Ar Argon
39	40	45	48	51	52		26		59	64	65	70		75	79		28
Y	Ca	လွ	F	>	ပ်	Mn	Fe		Z	D C	Zn	Ga	g	As	Se		궃
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24		Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Ε	Arsenic 33	=	m	Krypton 36
85	88	68	91	93	96		101		106	108	112	115		122			131
SP Pp	Š	>	Zr	Q N	Mo	ည			Pd		ဦ	I	Sn	Sb	<u>е</u>	П	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46		Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207				
S	Ba	Гa	Ξ	Б	>	Re	SO S	<u>'</u>	풉	Ρn	Нg	11	Pb		S	¥	Ru
Caesium 55	Barium 56	Lanthanum 57 *	+ Hafnium	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	_	Polonium 84	ö	Radon 86
	226	227															
<u>ن</u>	Ra	Ac															
Francium 87	Radium 88	Actinium 89															
*58_71	*58_71 Lanthanoid series	1 corioc		140		144		150	152	157	159	162	165	167	169	173	175
00 103	90-7 Lantination series	טמוומט ב		ဝီ	Ą	PN		Sm	En	P G	Д	٥	유	ш	Tm	Υb	Ľ
201-08	Actil Iold 9	GIIGS		Cerium	Praseodymium	Neodymium		Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbinm	Thulium	Ytterbium	Lutetium

			Lutetium 71		۲	Lawrencium 103
	173	Yb	Ytterbium 70		No	Nobelium 102
	169	۳	Thulium 69		Md	Mendelevium 101
	167	ш	Erbium 68		FB	Fermium 100
			Holmium 67		Es	Einsteinium 99
	162	٥	Dysprosium 66		ర	Californium 98
		Д	9		æ	Berkelium 97
	157	В	Gadolinium 64		Cm	
			Europium 63		Am	Americium 95
	150	Sm	9		Pu	Plutonium 94
		Pm	Promethium 61		Np	
	144	PN	Neodymium 60	238	D	Uranium 92
	141	፵	Praseodymium 59		Ра	Protactinium 91
	140	Se	Cerium 58	232	느	Thorium 90
500	ocinco bioc	iold selles	ות אפוופא	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.